The Effect of Zinc and Melatonin Administration on Lipid Peroxidation, IL-6 Levels, and Element Metabolism in DMBA-Induced Breast Cancer in Rats

Gulbahce-Mutlu E., Baltaci S. B., Menevse E., Mogulkoc R., Baltaci A. K.

Biological Trace Element Research, vol.199, no.3, pp.1044-1051, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 199 Issue: 3
  • Publication Date: 2021
  • Doi Number: 10.1007/s12011-020-02238-0
  • Journal Name: Biological Trace Element Research
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Page Numbers: pp.1044-1051
  • Keywords: Breast cancer, DMBA, IL-6, Lipid peroxidation, Rat, Trace element
  • Istanbul Medipol University Affiliated: No


The purpose of this study was to investigate the effects of zinc and melatonin administration on interleukin-6, lipid peroxidation parameters, and element metabolism in DMBA-induced breast cancer in female rats. A total of 42 recently weaned Wistar rats were divided into 5 groups as follows: control (group 1), DMBA control (group 2), DMBA + zinc (group 3), DMBA + melatonin (group 4), and DMBA + melatonin and zinc (group 5). Malondialdehyde (MDA) and glutathione (GSH) levels in breast tissue and blood samples were determined via spectrophotometric methods. In addition, iron, magnesium, zinc, and copper levels in serum samples were determined by atomic emission, and plasma interleukin-6 levels were determined by ELISA method. The highest tissue and plasma MDA and the lowest tissue and erythrocyte GSH levels found in the study were in group 2; the highest tissue and erythrocyte GSH levels and the lowest tissue and plasma MDA levels are in group 5 (P < 0.05). Iron, magnesium, and zinc levels of groups 3, 4, and 5 were higher than the DMBA group without administration (group 2), but the copper values were significantly lower (P < 0.05). The highest IL-6 levels were determined in group 2 while IL-6 levels in the DMBA group (G5) treated with combined melatonin and zinc were lower than all other breast cancer groups (P < 0.05). According to the findings obtained in this presented study, combined zinc and melatonin therapy can contribute to the prevention of tumor growth by improving the disruption in element metabolism and suppressing IL-6 levels and reducing tissue damage that causes the cancer.