Composite Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation


Creative Commons License

Li J., Dang S., Huang Y., Chen P., Qi X., Wen M., ...Daha Fazla

IEEE Transactions on Wireless Communications, cilt.22, sa.6, ss.3748-3761, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 6
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1109/twc.2022.3220752
  • Dergi Adı: IEEE Transactions on Wireless Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.3748-3761
  • Anahtar Kelimeler: achievable rate, bit error rate (BER), index modulation, low-complexity detection, Orthogonal frequency division multiplexing (OFDM)
  • İstanbul Medipol Üniversitesi Adresli: Evet

Özet

In this paper, we propose a composite multiple-mode orthogonal frequency division multiplexing with index modulation (C-MM-OFDM-IM) scheme to increase the spectral efficiency (SE) of OFDM-IM systems by extending the indexing to the energy and constellation domains. In C-MM-OFDM-IM, the information bits are mapped to not only the subcarrier activation patterns (SAPs) and modulation symbols, but also the energy allocation patterns (EAPs) and constellation activation patterns (CAPs). To cope with the practical situations, we propose a variant IM scheme named C-MM-OFDM-IM-II to build a new mapping rule between information bits and the increased CAPs, capable of further increasing the SE of C-MM-OFDM-IM. Upper-bounded bit error rate (BER) and lower-bounded achievable rate are both derived in closed-form to evaluate the performance of C-MM-OFDM-IM(-II). Moreover, we further propose two enhanced schemes, named generalized C-MM-OFDM-IM(-II) and C-MM-OFDM with in-phase/quadrature IM(-II), where the former jointly considers all SAPs, EAPs, CAPs and modulated symbols, while the latter expands the index implementation to the in-phase and quadrature constellation domains. Simulation results show that C-MM-OFDM-IM(-II) outperforms the conventional OFDM-IM related schemes, especially in the high signal-to-noise ratio (SNR) region, and verify the accuracy of the theoretical analysis for the upper-bounded BER and achievable rate.