Q-ROF Fuzzy TOPSIS and VIKOR Methods for the Selection of Sustainable Private Health Insurance Policies

Creative Commons License

ERDEBİLLİ B., Gecer E., YILMAZ İ., Aksoy T., Hacıoglu U., DİNÇER H., ...More

Sustainability (Switzerland), vol.15, no.12, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 15 Issue: 12
  • Publication Date: 2023
  • Doi Number: 10.3390/su15129229
  • Journal Name: Sustainability (Switzerland)
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, CAB Abstracts, Communication Abstracts, Food Science & Technology Abstracts, Geobase, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Keywords: fuzzy logic, multi-criteria decision making, Q-ROF TOPSIS, Q-ROF VIKOR, sustainable health insurance policy selection
  • Istanbul Medipol University Affiliated: Yes


As a result of the inability of people to meet their demands in the face of increasing demands, people tend to have private health insurance in addition to the general health insurance offered as a public service. Due to the increasing trend of taking out private sustainable health insurance, the number of private sustainable health insurance plans in the health insurance market has increased significantly. Therefore, people may be confronted by a wide range of private health insurance plan options. However, there is limited information about how people analyze private health insurance policies to protect their health in terms of benefit payouts as a result of illness or accident. Thus, the objective of this study is to provide a model to aid people in evaluating various plans and selecting the most appropriate one to provide the best healthcare environment. In this study, a hybrid fuzzy Multiple Criteria Decision Making (MCDM) method is suggested for the selection of health insurance plans. Because of the variety of insurance firms and the uncertainties associated with the various coverages they provide, q-level fuzzy set-based decision-making techniques have been chosen. In this study, the problem of choosing private health insurance was handled by considering a case study of evaluations of five alternative insurance companies made by expert decision makers in line with the determined criteria. After assessments by expert decision makers, policy choices were compared using the Q-Rung Orthopair Fuzzy (Q-ROF) sets Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Q-ROF VIšeKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods. This is one of the first attempts to solve private health policy selection under imprecise information by applying Q-ROF TOPSIS and Q-ROF VIKOR methods. At the end of the case study, the experimental results are evaluated by sensitivity analysis to determine the robustness and reliability of the obtained results.