Verteporfin mediated sequence dependent combination therapy against ovarian cancer cell line

ERDEM S. S., Obeidin V. A., YİĞİTBAŞI T., Tumer S. S., YİĞİT P.

Journal of Photochemistry and Photobiology B: Biology, vol.183, pp.266-274, 2018 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 183
  • Publication Date: 2018
  • Doi Number: 10.1016/j.jphotobiol.2018.04.039
  • Journal Name: Journal of Photochemistry and Photobiology B: Biology
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.266-274
  • Keywords: Photodynamic therapy, Combination therapy, Cationic peptide, Verteporfin, Ovarian Cancer
  • Istanbul Medipol University Affiliated: Yes


Ovarian Cancer is one of the deadliest gynecological cancer showing high resistance to chemotherapy. Non-overlapping and synergistic combination therapies are the best option to overcome this multi-pathological silent disease. Cationic peptides (CPs) with high targeting feature and ability to pass through cell membrane induce apoptosis via disruption of cancer cell membrane. Photodynamic Therapy (PDT) is a noninvasive clinically approved treatment modality combining light activated photosensitizer, light and oxygen. In this study we present, combination therapy composed of 9-mer +4 charge bearing CP and Benzoporphyrin derivative monoacid, (BPD-MA, Verteporfin) mediated PDT. In order to evaluate the effect of sequence on the outcome of the therapy, CP and BPD-MA mediated PDT was applied in two different sequence: ‘CP first’ ‘BPD-MA first’. Treatment efficacy of combination therapy in SKOV-3 ovarian cancer cell line has been evaluated based on cell inhibition, cell death pathway, Combination index (CI), and Dose Reduction Index (DRI) values. When SKOV-3 ovarian cancer cell line treated with BPD-MA mediated PDT (5 J/cm2) and CP individually, IC30 values for each drug were determined as 1.1 μM and 240 μM respectively and apoptosis was the major death cell pathway for both of the drugs. In the case of combination therapy, SKOV-3 cell line treated with drugs in constant ratio yet on different sequence. Drugs were used in constant ratio so that one of them would not de-emphasize the effect of other in any concentration point. Our theoretical and experimental results were in agreement and showed that the treatment outcome significantly depends on the order of the treatment. For instance, while BPD-MA mediated PDT was applied prior to CP, cell inhibition at IC30 value of BPD-MA was roughly 28% with CI =3.3 suggesting antagonistic interaction between each therapy. When the sequence of treatment was changed to CP first, cell inhibition at IC30 concentration of CP was determined as 98% with CI = 0.3 creating substantial synergism between the drugs. Moreover, synergistic interactions were observed at all concentration points at CP first scenario. DRI value for CP first treatment option was much higher compared to BPD-MA first treatment making the former treatment sequence more attractive option for clinically relevant combination therapies. Based on our results, we strongly believe that 9-mer CP and BPD-MA-PDT based combination therapy, offering synergistic therapeutic outcome, may increase chances of treatment of ovarian cancer in comparison to 9-mer CP and/or BPD-MA alone case.