Deep Learning-Based Blind Image Super-Resolution using Iterative Networks

Yaar A., Ates H. F., GÜNTÜRK B. K.

2021 International Conference on Visual Communications and Image Processing, VCIP 2021, Munich, Germany, 5 - 08 December 2021 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/vcip53242.2021.9675367
  • City: Munich
  • Country: Germany
  • Keywords: Super-resolution, Kernel estimation, Blind, Iterative, Deep learning
  • Istanbul Medipol University Affiliated: Yes


Deep learning-based single image super-resolution (SR) consistently shows superior performance compared to the traditional SR methods. However, most of these methods assume that the blur kernel used to generate the low-resolution (LR) image is known and fixed (e.g. bicubic). Since blur kernels involved in real-life scenarios are complex and unknown, per-formance of these SR methods is greatly reduced for real blurry images. Reconstruction of high-resolution (HR) images from randomly blurred and noisy LR images remains a challenging task. Typical blind SR approaches involve two sequential stages: i) kernel estimation; ii) SR image reconstruction based on estimated kernel. However, due to the ill-posed nature of this problem, an iterative refinement could be beneficial for both kernel and SR image estimate. With this observation, in this paper, we propose an image SR method based on deep learning with iterative kernel estimation and image reconstruction. Simulation results show that the proposed method outperforms state-of-the-art in blind image SR and produces visually superior results as well.