PD-L1 stimulation can promote proliferation and survival of leukemic cells by influencing glucose and fatty acid metabolism in acute myeloid leukemia


Soltani M., Ghanadian M., Ghezelbash B., Shokouhi A., Zamyatnin A. A., Bazhin A. V., ...Daha Fazla

BMC Cancer, cilt.23, sa.1, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 23 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1186/s12885-023-10947-7
  • Dergi Adı: BMC Cancer
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CINAHL, EMBASE, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Acute myeloid leukemia, AML, Fatty acid oxidation, Immunometabolism, PD-1, Pentose phosphate pathway, Programmed death ligand-1
  • İstanbul Medipol Üniversitesi Adresli: Hayır

Özet

Background: Leukemic cell metabolism plays significant roles in their proliferation and survival. These metabolic adaptations are under regulation by different factors. Programmed Death Ligand -1 (CD-274) is one of the immune checkpoint ligands that do not only cause the immune escape of cancer cells, but also have some intracellular effects in these cells. PD-L1 is overexpressed on leukemic stem cells and relates with poor prognosis of AML. In this study, we investigated effects of PD-L1 stimulation on critical metabolic pathways of glucose and fatty acid metabolisms that have important roles in proliferation and survival of leukemic cells. Methods: After confirmation of PD-L1 expression by flow cytometry assay, we used recombinant protein PD-1 for stimulation of the PD-L1 on two AML cell lines, HL-60 and THP-1. Then we examined the effect of PD-L1 stimulation on glucose and fatty acid metabolism in cells at the genomic and metabolomic levels in a time dependent manner. We investigated expression changes of rate limiting enzymes of theses metabolic pathways (G6PD, HK-2, CPT1A, ATGL1 and ACC1) by qRT-PCR and also the relative abundance changes of free fatty acids of medium by GC. Results: We identified a correlation between PD-L1 stimulation and both fatty acid and glucose metabolism. The PD-L1 stimulated cells showed an influence in the pentose phosphate pathway and glycolysis by increasing expression of G6PD and HK-2 (P value = 0.0001). Furthermore, PD-L1 promoted fatty acid β-oxidation by increasing expression of CPT1A (P value = 0.0001), however, their fatty acid synthesis was decreased by reduction of ACC1 expression (P value = 0.0001). Conclusion: We found that PD-L1 can promote proliferation and survival of AML stem cells probably through some metabolic changes in leukemic cells. Pentose phosphate pathway that has a critical role in cell proliferation and fatty acids β-oxidation that promote cell survival, both are increased by PD-L1 stimulation on AML cells.