Evaluatıon of the descriptive values and occlusion effects of air and bone conducted cervical vestibular evoked myogenic potentials in normal individuals

Creative Commons License

Taşcı B., Gençtürk E., ŞERBETÇİOĞLU M. B.

Egyptian Journal of Otolaryngology, vol.38, no.1, 2022 (Scopus) identifier identifier

  • Publication Type: Article / Article
  • Volume: 38 Issue: 1
  • Publication Date: 2022
  • Doi Number: 10.1186/s43163-022-00292-0
  • Journal Name: Egyptian Journal of Otolaryngology
  • Journal Indexes: Scopus
  • Keywords: Air conducted cVEMPs, Bone conducted cVEMPs, Occlusion effect, Vestibular system, Vestibular evoked myogenic potentials
  • Istanbul Medipol University Affiliated: Yes


Objective: This study was aimed to establish the descriptive statistical values of cVEMPs’s responses which are evoked by air and bone conducted stimuli and to examine the effects of occlusion on bone conducted (BC) cVEMPs test. Methods: The study was carried out on 20 individuals (n = 40 ears), 11 women and 9 men, at the Medipol Mega University Hospital. cVEMPs tests were applied in five stages to the individuals who are volunteer to participate in this study. Firstly, the air conducted (AC) cVEMPs test was applied. Then, BC cVEMPs tests were applied in four different conditions with the aim of examining the occlusion effect. Results: Latency values of the AC cVEMPs response were 15.17 ± 0.77 ms for P1 and 24.12 ± 1.38 ms for N1 and 8.95 ± 1.12 ms for interpeak latencies. P1N1 amplitude value was 149.73 ± 75.00 μV. VEMPs asymmetry ratio (VAR) was 0.16 ± 0.16. Latency measurements of the BC cVEMPs response were 14.38 ± 0.85 ms for P1 and 23.40 ± 1.50 ms for N1 and 9.05 ± 1.57 ms for interpeak latencies. P1N1 amplitude value was 107.58 ± 54.08 μV. VAR was 0.15 ± 0.12. Both AC cVEMPs and BC cVEMPs parameters were demonstrated that there are not any significant differences between female-male and left ear-right ear. When AC and BC cVEMPs responses were compared, the mean P1 and N1 latencies of BC cVEMPs were significantly shorter than those of AC cVEMPs (p < 0.01). The mean amplitudes of AC cVEMPs were significantly larger than those of BC cVEMPs (p < 0.01). When the impact of the occlusion effect on cVEMPs parameters was examined, no statistical significance was found. Conclusion: As a result, it was thought that the BC cVEMPs, which is not widely used in clinics, might be used in the vestibular assessment of conductive hearing losses (CHL) in clinics, by obtaining descriptive values with this study. In addition, it was thought that it might be used as an auxiliary test to diagnose patients with hyperacusis who are disturbed by loud noises.