A survey of machine learning-based methods for COVID-19 medical image analysis

Creative Commons License

Sailunaz K., Özyer T., Rokne J., Alhajj R.

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, vol.61, no.6, pp.1257-1297, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Review
  • Volume: 61 Issue: 6
  • Publication Date: 2023
  • Doi Number: 10.1007/s11517-022-02758-y
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, Business Source Elite, Business Source Premier, CINAHL, Compendex, Computer & Applied Sciences, INSPEC
  • Page Numbers: pp.1257-1297
  • Keywords: COVID-19, Medical image analysis, Machine learning, Deep learning, Transfer learning, Computer tomography
  • Istanbul Medipol University Affiliated: Yes


The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches. [Figure not available: see fulltext.].