Zinc Ameliorates Nogo-A Receptor and Osteocalcin Gene Expression in Memory-Sensitive Rat Hippocampus Impaired by Intracerebroventricular Injection of Streptozotocin

Gumus H., Baltaci S. B., Unal O., Gulbahce-Mutlu E., Mogulkoc R., Baltaci A. K.

Biological Trace Element Research, vol.201, no.7, pp.3381-3386, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 201 Issue: 7
  • Publication Date: 2023
  • Doi Number: 10.1007/s12011-022-03410-4
  • Journal Name: Biological Trace Element Research
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Pollution Abstracts, Veterinary Science Database
  • Page Numbers: pp.3381-3386
  • Keywords: Hippocampus, Icv-STZ injection, Nogo-A receptor, Osteocalcin, Zinc
  • Istanbul Medipol University Affiliated: No


Metabolic dysfunction is a critical step in the etiopathogenesis of Alzheimer’s disease. In this progressive neurological disorder, impaired zinc homeostasis has a key role that needs to be clarified. The aim of this study was to investigate the effect of zinc deficiency and administration on hippocampal Nogo-A receptor and osteocalcin gene expression in rats injected with intracerebroventricular streptozotocin (icv-STZ). Forty male Wistar rats were divided into 5 groups in equal numbers: Sham 1 group received icv artificial cerebrospinal fluid (aCSF); Sham 2 group received icv a CSF and i.p. saline; STZ group received 3 mg/kg icv STZ; STZ-Zn-deficient group received 3 mg/kg icv STZ and fed a zinc-deprived diet; STZ-Zn-supplemented group received 3 mg/kg icv STZ and i.p. zinc sulfate (5 mg/kg/day). Hippocampus tissue samples were taken following the cervical dislocation of the animals under general anesthesia. Nogo-A receptor and osteocalcin gene expression levels were determined by real-time-PCR method. Zinc supplementation attenuated the increase in hippocampal Nogo-A receptor gene expression, which was significantly increased in zinc deficiency. Again, zinc supplementation upregulated the intrinsic protective mechanisms of the brain by activating osteocalcin-expressing cells in the brain. The results of the study show that zinc has critical effects on Nogo-A receptor gene expression and hippocampal osteocalcin gene expression levels in the memory-sensitive rat hippocampus that is impaired by icv-STZ injection. These results are the first to examine the effect of zinc deficiency and supplementation on hippocampal Nogo-A receptor and osteocalcin gene expression in icv-STZ injection in rats.