A Comparative Study of Different Pre-Trained DeepLearning Models and Custom CNN for Pancreatic Tumor Detection

Creative Commons License

Zavalsız M. T., Alhajj S., Sailunaz K., Ozyer T., Alhajj R.

International Arab Journal of Information Technology, vol.20, no.3 Special Issue, pp.515-526, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 20 Issue: 3 Special Issue
  • Publication Date: 2023
  • Doi Number: 10.34028/iajit/20/3a/9
  • Journal Name: International Arab Journal of Information Technology
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Arab World Research Source, Computer & Applied Sciences
  • Page Numbers: pp.515-526
  • Keywords: convolutional neural networks, Deep learning, medical image, pancreatic ductal adenocarcinoma, pancreatic tumor detection
  • Istanbul Medipol University Affiliated: Yes


Artificial Intelligence and its sub-branches like MachineLearning (ML) and Deep Learning (DL) applications have the potential to have positive effects that can directly affect human life. Medical imaging is briefly making the internal structure of the human body visible with various methods. With deep learning models, cancer detection, which is one of the most lethal diseases in the world, can be made possible with high accuracy. Pancreatic Tumor detection, which is one of the cancer types with the highest fatality rate, is one of the main targets of this project, together with the data set of computed tomography images,which is one of the medical imaging techniques and has an effective structure in Pancreatic Cancer imaging. In the field of image classification, which is a computer vision task, the transfer learning technique, which has gained popularity in recent years, has been applied quite frequently. Using pre-trained models werepreviously trained on a fairly large dataset and using them on medical images is common nowadays. The main objective of this article is to use this method, which is very popular inthe medical imaging field, in the detection of PDAC, one of the deadliest types of pancreatic cancer, and to investigate how it per-forms compared to the custom model created and trained from scratch. The pre-trained models which are used in this project areVGG-16 and ResNet, which are popular Convolutional Neutral Network models, for Pancreatic Tumor Detection task. With the use of these models, early diagnosis of pancreatic cancer, which progresses insidiously and therefore does not spread to neighboring tissues and organs when the treatment process is started, may be possible. Due to the abundance of medical images reviewed by medical professionals, which is one of the main causes for heavy workload of healthcare systems, this applicationcan assist radiologists and other specialists in Pancreatic Tumor detection by providing faster and more accurate method.