Regular consumption of green tea improves pulse pressure and induces regression of left ventricular hypertrophy in hypertensive patients


Al-Shafei A. I. M., El-Gendy O. A. A.

Physiological Reports, vol.7, no.6, 2019 (Scopus) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 7 Issue: 6
  • Publication Date: 2019
  • Doi Number: 10.14814/phy2.14030
  • Journal Name: Physiological Reports
  • Journal Indexes: Scopus
  • Keywords: Green tea, hypertension, left ventricular hypertrophy, pulse pressure
  • Istanbul Medipol University Affiliated: Yes

Abstract

This study characterized the effects of regular green tea (GT) and hot water (HW) ingestion on systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and left ventricular hypertrophy (LVH) in two equal, sex- and age-matched groups; Grp1 and Grp2 (n = 100 each; age 53 ± 4 years) of hypertensive patients. Grp1 had regular GT treatment, followed by HW ingestion, whereas Grp2 had HW ingestion followed by GT treatment for periods of 4 months each. Electrocardiographic (ECG) and echocardiographic assessments of LVH were made before and at the end of both periods. SBP was lowered significantly by 6.6%; DBP by 5.1%, and PP by 9.1% by the end of month 4 of GT treatment in Grp1. Upon GT cessation and HW ingestion, SBP, DBP, and PP returned to pretreatment levels over 4 months. In Grp2, SBP, DBP, and PP were reduced insignificantly by 1.5%, 1.0%, and 2.3% by the end of the 4th month of HW ingestion. Conversely, over 4 months of GT treatment, SBP, DBP, and PP were significantly lowered by 5.4%, 4.1%, and 7.7% from the baseline values, respectively. ECG and echocardiographic evidence of LVH was shown in 20% of Grp1 and 24% of Grp2 patients before intervention. This was significantly lowered to 8% and 10% in Grp1 and Grp2 by GT treatment. However, this increased to 16% following HW ingestion in Grp1. HW ingestion did mot induce regression of LVH in Grp2. Thus, regular GT ingestion has cardiovascular protective effects.